Partially quantized currents in supersolids

Niccolò Preti,^{1,2,3} Charles Drevon,^{2,3} Nicolò Antolini,³ Giulio Biagioni,⁴ Giovanni Ferioli,^{1,2} Andrea Fioretti,³ Carlo Gabbanini,³ and Giovanni Modugno^{1,2,3}

¹ Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze, Italy

² European Laboratory for Nonlinear Spectroscopy, Università di Firenze, Firenze, Italy
³ Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Sede Secondaria di Pisa, Pisa, Italy

⁴ Universite Paris-Saclay, Institut d' Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau,

France

It has been predicted [1] that a supersolid could host persistent currents whose nature strongly depend on the superfluid fraction f_s of the system. In particular, the angular momentum of these currents is not quantized as in the case of regular superfluids, but depends on f_s , thus making these currents partially quantized. I will showcase experimentally accessible protocols to both excite partially quantized currents for a supersolid on a ring and also to measure its angular momentum. These protocols were valided by making numerical simulations of the excitation and probing schemes using the Gross-Pitaevskii equation. I will also report on an ongoing experiment aimed at trapping a supersolid on a ring where we will apply our protocol to observe the partial quantization of the current states of a supersolid [2,3].

[1] Tengstrand, M. Nilsson, et al. "Persistent currents in toroidal dipolar supersolids." Physical Review A 103.1 (2021): 013313.

[2] Preti, Niccolò, et al. "Blue repulsive potential for dysprosium Bose-Einstein condensates." Physical Review A 110.2 (2024): 023307.

[3] Preti, N. "Towards dipolar supersolids in a ring." IL NUOVO CIMENTO 100.256 (2024): 47.