High-repetition-rate fermionic quantum gas microscope for quantum simulation

Luca Muscarella,^{1,2} Robin Groth,^{1,2} Andreas Von Haaren,^{1,2} Janet Qesja,^{1,2} Francesco Testi,^{1,3} Liyang Qiu,^{1,2} Titus Franz,^{1,2} Timon Hilker,^{1,2,4} Immanuel Bloch,^{1,2} and Philipp Preiss^{1,2}

¹ Max-Planck Institute of Quantum Optics
² Munich Center for Quantum Science and Technology
³ Ludwig Maximilian University Munich
⁴ University of Strathclyde

Fermionic quantum simulators provide a powerful platform for exploring high-temperature superconductivity, topological phases, and many-body dynamics-challenges that persist even with the advent of qubit-based quantum computing. Here, we present recent results from our high-repetition-rate fermionic quantum gas microscope optimized for rapid data acquisition. Fast cycle times are achieved through high-power optical traps, rapid evaporative cooling, and efficient spin-resolved fluorescence imaging. Our system will feature stable bichromatic optical lattices for implementing two-fermion gates and single-particle addressing for precise single-qubit control, enabling the exploration of quantum information processing schemes.